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SUMMARY

A fresh approach is taken to the embarrassingly difficult problem of
adequately modeling simple pure advection. An explicit conservative control-
volume formulation makes use of a universal limiter for transient interpolation
modeling of the advective transport equations. This ULTIMATE conservative dif-
ference scheme is applied to unsteady, one-dimensional scalar pure advection
at constant velocity, using three critical test profiles: an isolated sine-
squared wave, a discontinuous step, and a semi-ellipse. The goal, of course,
is to devise a single robust scheme which achieves sharp monotonic resolution
of the step without corrupting the other profiles. The semi-ellipse is partic-
ularly challenging because of its combination of sudden and gradual changes in
gradient. The ULTIMATE strategy can be applied to explicit conservative
schemes of any order of accuracy. Second-order schemes are unsatisfactory,
showing steepening and clipping typical of currently popular so-called "high
resolution” shock-capturing or TVD schemes. The ULTIMATE third-order upwind
scheme is highly satisfactory for most flows of practical importance. Higher
order methods give predictably better step resolution, although even-order
schemes generate a (monotonic) waviness in the difficult semi-ellipse simula-
tion. But little is to be gained above ULTIMATE fifth-order upwinding which
gives results close to the ultimate one might hope for.

INTRODUCTION

In a landmark series of papers in the 1970's, Bram van Leer worked
"Towards the Ultimate Conservative Difference Scheme" for computational fluid
dynamics (refs. 1 to 5). This work spawned a body of literature in the present
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decade involving advective modeling methods which are sometimes classified as
“shock-capturing" schemes or, more recently, as "TVD" schemes, referring to the
oscillation-suppression strategy of total-variation diminution (ref. 6). The
ultimate conservative difference scheme for CFD has proven surprisingly elu-
sive. There have been notable "successes" such as impressive demonstrations

of nonoscillatory high resolution of steps and shock waves, for example; but
progress has been unexpectedly slow. It seems that correction of one defect
always introduces another, equally severe. Unphysical oscillations inherent

in classical second-order methods were eliminated by switching to first-order
upwinding; but this merely replaced unacceptable oscillations with (what was
ultimately realized to be) unacceptable global artificial diffusion. By devis-
ing methods with locally varying artificial diffusion (small in smooth regions,
larger in sharply varying regions), it is possible to achieve somewhat better
resolution than global first-order upwinding without introducing spurious
numerical oscillations.

Some forms of shock-capturing (or TVD) schemes achieve their impressive
results for step resolution by the use of locally varying positive artificial
diffusion or viscosity (first-order upwinding) to suppress oscillations, com-
bined with local negative viscosity (such as first-order downwinding) to arti-
ficially compress or steepen the front. Unfortunately, this inherent negative
diffusion is responsible for artificial steepening of (what should be) gentle
gradients, as well, as will be demonstrated. Because of the concomitant flat-
tening of local extrema (due to the local positive artificial diffusion), this
defect has become known as "clipping," although the problem is initiated by
the artificial steepening introduced to give high resolution to simulated
fronts. In some cases (for example, a step-function followed by a ramp),
inherent oscillations, rather than being suppressed, are converted into a
series of small monotonic steps, a phenomenon known as "stair-casing."

As will be clearly demonstrated here, currently popular forms of TVD
schemes achieve monotonic (although not always sharp) resolution of steps at
the expense of gross (albeit nonoscillatory) distortion of simple smooth pro-
files. Thus, A.R. Mitchell's characterization of advective modeling as compu-
tational dynamics' ultimate embarrassment (ref. 7) is still appropriate, given
the current state of the art. The ultimate goal of the current research pro-
gram is to inject some self-confidence (as opposed to self-satisfaction) into



computational fluid dynamics by developing a truly robust (i.e., universally
applicable) framework on which further refinements can be constructed.

The present paper is the first in a proposed series presenting a fresh
approach to simulating the advective term, which, being an odd-order (first-)
derivative, is the most significant aspect of CFD (ref. 8). An extremely sim-
ple form of "monotonizing" universal limiter is described which can be appliied
to explicit conservative difference schemes, with no constraints on the order
of accuracy and resolution. The universal limiter banishes unphysical over-
shoots and nonmonotonic oscillations without corrupting the expected accuracy
of the underlying method. In particular, when used with (artificial-viscosity-
free) third or higher order base schemes, it does not induce artificial com-
pression (steepening) or clipping, typical of so-called "high resolution”
(actually, second-order) shock-capturing methods.

Conservative explicit advection schemes of arbitrarily high order can be
composed from "transient interpolation modeling" (TIM); i.e., for pure advec-
tion of a scalar ¢ at constant vector velocity v, the exact transient solu-
tion over time At s

o(x,At) = ¢(x-vAt,0) QP

where the accuracy (in both space and time) of the approximate numerical method
is determined solely by (multidimensional) spatial interpolation at the earlier
time-level. The ULTIMATE conservative difference scheme then consists of using
the universal limiter (UL) for transient interpolation modeling (TIM) of the
advective transport equations (ATE).

Since accurate modeling of the advective term is one of the more challeng-
ing aspects of CFD (in addition to nonlinearities, multidimensionality, etc.),
attention will be focused, in this first article, on the superficially simple
but embarrassingly difficult problem of unsteady one-dimensional pure advection
of scalar profiles at constant velocity. Three critical test profiles are con-
sidered: an isolated sine-squared wave, representing smooth functions with a
continuously turning gradient; a step discontinuity in value; and a semi-
ellipse, combining discontinuous and continuous changes in gradient. At
first, several (unlimited) explicit schemes are surveyed, together with some
popular shock-capturing methods which are explained in terms of the Normalized



Variable Diagram (NVD). The NVD is also used as the basis for development of
the universal limiter, which is then explained in terms of unnormalized vari-~
ables and applied to explicit polynomial TIM methods of second through eighth
order. For most (relatively smooth) flows, the cost-effective third-order
upwind ULTIMATE scheme gives excellent practical results. Local higher order
resolution can be automatically built in with almost negligible additional
cost.

SCALAR ADVECTION

Unsteady, one-dimensional, pure advection of a scalar ¢ at constant
velocity u 1is described by

u 3 (2)

This equation can be integrated in time over a time-step At and in space over
a control volume (CV) at station i from -ax/2 to +Ax/2, assuming a uniform
grid. This gives the exact conservative difference scheme

6771 - 8] - (o) - 9) (3)

where the bars represent spatial averages, and the asterisks time averages, the
superscripts designate time-levels, ¢ 1is the Courant number uAt/Ax, and right
and left time-averaged face values are indicated. The CV spatial averages can

be written in terms of central node values plus a deviation term

$; = ¢; + DEV (4)
Now assume that node values are related by an exact equation of the form
- o7 e o, - 9,)
where the face values now include the effects of the deviation terms. The
deviation terms themselves will then satisfy

pev™t! _ pEV" - ~C(DEV_ - DEV,) (6)

given suitable definitions of the terms on the right. Thus, from equations (3),
(4), and (6),



- e[l - o) - (o - oo

which can be put in the form of equation (5) provided the effective average
face value at any face f is defined as

*
be = ¢¢ - DEVf (8)
In this interpretation, equation (5) rewritten as
1
7 <ol - (s, - oy)

can still be considered exact for constant ¢, given appropriate definitions
of the effective face values. In practical simuiations, the face values are
approximated and the form of the equation is extended to variable advecting
velocity (including sign-reversals), i.e.,

n+1 n
7! = o] - (8, - cg8y) (10)

Transient Interpolation Modeling

One method of generating advective algorithms in the form of equation (9)
is based on equation (1), which in one dimension can be written, for constant

u,
7! = (x.8t) = p(x-uat,0) = ¢"(x-uat) an

where ¢"(x) can be considered to be a function of the normalized local coor-
dinate, £ = (x - xi)/Ax, and given by

e"M(x) = ¢? + F(E) (12)

The homogeneous spatial interpolation function f can in turn be written as
f(g) = £g9(&) (13)

where g might be a polynomial with coefficients depending on differences (of
various orders) of local node variables. For a conservative scheme, these
coefficients can always be written as follows

9UE) = (Ay 1y = A _qyp) + By 1o = By /)6 + . . . (14)



or

g(g) = h, (&) (15

i4172¢8 - h

i-1/2

where h1-1/2 can be obtained from h1+]/2 by the indicated reduction in
index by 1 on all involved node variables. Then, by defining

¢r(-g) = h1+]/2(§) (16)
and
¢Q(—£) = hi_]/z(g) an

Equations (11) to (17) can be combined into a form identical to equation (9)

7! = o] - clo O - ¢Q(c)] (18)
Note that the effective face values are in general functions of Courant number
and that conservation is guaranteed by equations (16) and (17). (Extension to
variable velocity parallels eq. (10), with face values being functions of their
respective local Courant numbers.)

For example, for first-order upwinding, transient interpolation modeling
is based on a linear function

fg)

g<¢? - ¢?_]) for ¢ >0 19)

n n
£<¢i+l - ¢i) for ¢ <0 20)

Thus, for positive or negative ¢, ¢r can be written in terms of quantities
centered at the right CV face

] n n n n oy
2.(0) = 3 [<¢1+] . ¢1) - SGN(c)<¢i+] - ¢i>] = 00", say 21
and, of course, ¢y is obtained by reducing all indexes by 1. Note that the
first term in brackets is the sum of node values straddling the CV face,
whereas the second term involves the difference of these values.

Similarly, the well-known Lax-Wendroff scheme (second-order central TIM)
corresponds to centered quadratic spatial interpolation



n n n n n
¢:.1 - O ¢:.q - 20 + ¢
F(E) = & ( i+ 5 1-1) . < i+] 21 1-1) £ (22)

and the corresponding right face value is

o.(C) = % [<¢?+1 * ¢?) - C<¢?+1 - ¢?>] = ¢r('2) (23)
valid for both positive and negative ¢ values. Comparing equations (21)
and (23), it is seen that these two schemes differ by the Courant-number-
dependence of the coefficient of the first-difference term. Both give exact
point-to-point transfer when ¢ = 1: ¢ = ¢?, ¢, = ¢?_], ¢?+] = ¢?_]; and
similarly when ¢ = -1.

The QUICKEST scheme (third-order upwinding TIM), is based on upwind
biassed cubic interpolation (ref. 9)

2
D _ @ _ A=A (02 3
0¥ = olP - 552 (292 - sanco &) (28)

where 259& is the (right-face-centered) sum of second-differences centered
at i and i+l

29& - <¢?+z - 2], + 4’?> * <¢?+1 - 25 + ¢?-1>

n n n n
= bi0 " i T 0 * b 25

and 83 is the difference of the above second-differences, i.e., the third-
difference (centered at the right face)
3 n n n n
8p = ®ip ~ 305, + 365 - 45, (26)

Note that <2£9$ - SGN(c)&?)/Z is the upwind biassed second-difference, propor-
tional to the upwind curvature. Conversely, for fourth-order central TIM

(centered quartic interpolation), less weight is placed on 8?
2
(4) 2y (. -¢9 2 ¢ .3
o =0 - G (297 - 5 ) 2P



Second-order upwinding, based on upwind shifted quadratic interpolation,
has a similar form to QUICKEST, but with a different coefficient of the
upwinded curvature term:

QW _ @ =D (,p2 3
6,20 = 902 - L=l (292 sancor 62) (28)

and Fromm's method (ref. 10) is simply the average of equations (23) and (28),
thereby cutting the curvature coefficient in half.

Fifth-order upwinding and sixth-order central follow a similar pattern

2 2
(5) (4) (0 -c¢cH -c¢" 4 5
02 = olM 2 (29} - soncor 6)) (29)
and
6) _ (&, (- A= ch (29° - £ &5) (30)
o =0 2 . 5! r 3°r
respectively, where 259? is the sum of fourth-differences
4 n n n n n n
2D = 65,3 7 305, + 205, + 205 - Iy + 4, (3D
and 8? is the face-centered fifth-difference
5 n n n n n n
8p = 95,3 7 35, + 105,y - 1067 + 307 | - ¢y, (32

Finally, seventh-order upwinding and eighth-order central are summarized

by
RGO I I 6 7
o) = 0l® 1< (292 - sanco 8]) (33)
and
® _ & a-cAHhua-cHo-d (296 ¢ s7> 3
O =0 - 2 - 7! r-4°r

respectively, where
6 n n n n n n n n
29 = by, = 5053t Iy, - by - 50y 4 9y - Sk, by 3 (3D
and

7 n n n n n n n n
Sp = Oy,q ~ To3,3 * 21055 = 350y 1+ 3507 - 2100 4+ Téy 5 - &5 4 (36)



Note that for Nth-order central methods, the coefficient of 82"] is propor-

tional to c¢/(N/2), as compared with SGN(c) for the related (N-1)th-order
upwind scheme.

Central or upwinded polynomial TIM methods of the above forms can, of
course, be continued up to arbitrarily high order via straight-forward recur-
sion formulas, based on Binomial coefficients or Pascal's triangle. For the
methods considered in this study, figure 1 shows the one-dimensional control-
volume stencils involved as the order is increased. The stencils are shown
for variable, possibly reversing, velocities, corresponding to equation (10),
even though the test problems used in this study involve only constant veloc-
ity, positive to the right. For this reason, first-order upwinding, for
example, involves the same three-point stencil as second-order central, corre-
sponding to equations (21) and (23), respectively. QUICKEST, second-order
upwinding, Fromm's method, and fourth-order central each involve a five-point
stencil, when velocity reversals are allowed for. Four grid points are
involved for each face, as seen from equations (25) and (26). This is the
same stencil used by all (second-order) shock-capturing TVD schemes. Clearly,
as the order of accuracy is increased, a wider stencil is necessitated; an Nth-
order central scheme and its related (N-1)th-order upwind scheme require an
(N+1)-point stencil in one dimension.

Test Problems

The following three test problems are selected on the basis of simplicity
and ease of reproducibility, and are intended to represent basic characteris-
tics of behavior that might be encountered in practice. A given numerical
scheme is considered successful if it is able to simulate all three test
problems to within some desired level of performance; if a scheme fails one or
more of the tests, it is deemed unsatisfactory no matter how accurately it
simulates any one of the other tests. Performance is judged on the basis of
two basic criteria: (1) total absolute error (ABSERROR)

N
£ |4 a1
i=1



where ¢ 1is the local error at each node

= ¢computed -~ Poxact (38)
and (2) the WAVINESS or total variation of error
N
W = E €5,1 ~ &4 (39)
i=1

In addition, it is usually desirable to monitor monotonicity; i.e., does an
initially monotonic profile remain so? In fact, strict monotonicity
maintenance is a basic (in fact the only) constraint determining the nature of
the universal limiter to be developed here.

The first test profile follows that used by Sweby (ref. 11), an isolated
sine-squared wave of width 20Ax

¢(t=0) = 51“2(232x> for 0 ¢ x < 20Ax

(40

= 0 otherwise
This function represents a relatively smooth profile with a continuously
turning gradient and a single local maximum. In order to simulate practical
situations, it is important to run the test problems over the same prescribed
distance in all cases, irrespective of time-step (Courant number) or initial
profile shape. In the tests described here, for example, the exact solutions
advance by 45 mesh-widths. Two Courant numbers are used: ¢ = 0.05 (900 time
steps), representing "small" At; and a "moderate" value of ¢ = 0.5 (90 time
steps). The 25-time-step simulation used by Sweby was not long enough to see
significant differences between the methods studied, or to allow their gross
deficiencies to develop (which are typically worse at small Courant numbers,
for a fixed distance).

The second test profile is a unit step change in ¢ over one mesh width.

Initially, ¢ = 0 everywhere to the right of a specified jump point; all other
points, including the upstream boundary, are set at 1.0. The unit step profile

10



is more fundamental than the isolated "square-wave," or box, used in some pre-
vious studies (e.g., Sweby used an isolated rectangular box of width 20Ax in
addition to the isolated sine-squared function of the same width). The box
profile, at best, merely gives twice as much information as the unit step; but
for highly oscillatory methods, oscillations excited by the step-up interfere
with those due to the step-down, and the resulting complex wave-pattern is not
as enlightening as that of the simple step simulation. The unit step is also a
basic test of monotonicity, a fundamental aspect of advective modeling. A
"good" step simulation is one which monotonically resolves the step in a
"small" number of mesh widths - the smaller the (monotonic) "numerical width,"
the better the method (for this test!).

The third test profile follows one used by Steven Zalesak (ref. 12) that
he attributes to B.E. McDonald. It consists of a semi-ellipse of width

Ziwa, initially centered at 1C,

$;(£=0) = Yi-d- IRLVI AT, LERNERN

= 0 otherwise 41)

This is a rigorous test in that an initial (leading) step change in gradient is
followed by a region of continuously changing gradient and finally by a trail-
ing step. Methods which are oscillation-free in the simple step simulation may
generate significant waviness just behind the leading step or just ahead of the
trailing step. The test used here differs slightly from that used by Zalesak
in being 20ax wide to conform to Sweby's sine-squared profile, rather than
30Ax; this does not have any significant qualitative effect on results.

Figure 2 shows the three initial profiles and the grid used for all tests.
For reference, the leading-edge of each profile is positioned at the same loca-
tion; the initial value is O for 1 > 23 in each case, and nonzero for smaller
values. Grid-points 1 and 2 are used for boundary-condition treatment. Numer-
ical boundary conditions are very simple: ¢Q = 1 for the step profile and
¢Q = 0 for the other two tests. Higher order methods (above fourth) require
the designation of pseudonode values conforming to the above pattern. In all
cases, computation begins with grid-point 1. To normalize the x-domain to
order unity, Ax is taken as 1/100; but this is irrelevant to the computation,

11



since the only parameter is the Courant number c¢. As mentioned, all tests are
run so that the exact solution would translate a fixed distance, taken to be

45Ax. Thus, the total number of update steps, N_, is related to the Courant

t’
number by

(42)

zl-h-
~+ |on

Results for Polynomial TIM Methods

Figures 3 to 12 show the results of simulating pure advection of the three
test profiles for first-order upwinding, the Lax-Wendroff scheme, second-order
upwinding, Fromm's method, QUICKEST, fourth-order central, fifth-order upwind-
ing, sixth-order central, seventh-order upwinding, and eighth-order central,
respectively. Each case is run at both a representative small Courant number
(c = 0.05, Nt = 900) and a moderate Courant number (¢ = 0.5, Nt = 90). First-
order upwinding is the only polynomial method which gives monotonic step reso-
lution; but the width of the resolution is poor and the other profiles show the
well-known effects of this method's inherently large global artificial numeri-
cal diffusion, which is worse at smaller Courant numbers, as seen in figure 3.
The Lax-Wendroff method (fig. 4) generates trailing oscillations (phase-lag
dispersion) typical of central-difference methods; in these cases, phase lag is
worse at smaller Courant numbers (compare figs. 4, 8, 10, and 12). Second-
order upwinding gives rise to leading oscillations, as seen in figure 5. It
was this observation that led to the idea of averaging the Lax-Wendroff method
with second-order upwinding in an effort to cancel phase-lead and phase-lag,
at least in some "average" sense (ref. 10). Fromm's zero-average-phase-error
method indeed shows marked improvement (fig. 6), with much less sensitivity to
Courant number, as seen. Fromm's method actually cancels the leading disper-
sion term in the truncation error only at ¢ = 0.5; in this case it is identical
to third-order upwinding (QUICKEST), as seen in the second half of figure 7.
QUICKEST gives markedly better performance at other Courant numbers, but the
two methods are qualitatively very similar. Note that the smooth (sine-
squared) function is particularly well modeled. Fourth-order central is again
highly oscillatory, with large ABSERROR and WAVINESS for each profile, as seen
in figure 8. The fact that fourth-order central methods are substantially

12



inferior to third-order upwinding is apparently not well known, and one con-
tinues to hear of researchers who switch to central fourth-order schemes after
experiencing "difficulties” with second-order.

With fifth-order upwinding (fig. 9), one begins to see a trend which con-
tinues to higher order: simulation of the smooth profile is excellent; as
order increases, the step rise is steeper but the odd-order overshoots are
larger and the even-order methods continue to be highly oscillatory, albeit
with shorter wavelength; with the even-order central methods, significant wavi-
ness develops in the semi-ellipse simulation just behind the initial jump in
gradient. These trends are seen by scanning across figures 7 to 12. Finally,
note that central (necessarily even-order) methods are much more sensitive to
Courant number. This is because the highest order term in the face-value
expression is proportional to ¢ rather than SGN(c); compare equations (23),
(27>, (30>, and (34) with (21), (24), (29), and (33), respectively. All the
methods considered here give exact point-to-point transfer at ¢ = 1, as seen
from the formulas for ¢.; i.e., ¢ = ¢? . by = ¢?_], and ¢?+] = ¢?_]. For
the higher order methods, point-to-point transfer also occurs (over more than
one mesh width) for larger integer values of c¢; however, in the absence of
modeled physical diffusion, these methods are not all stable over a continuous

range, except for 0 < ¢c ¢ 1.
NORMALIZED VARIABLE DIAGRAM
Normalized Variables

Figure 13 shows a one-dimensional control-volume with attention focussed
on one face (in this case, the left). In determining the effective face value,
¢f, the most influential nodes are the two straddling the face and the next
upstream node, the latter depending of course on the flow direction at the face
in question, i.e., the sign of Uge. These three node values can be labeled ¢p
(downstream), ¢U (upstream), and ¢C (central), as shown. Note the differ-
ence in definition of these nodes, depending on SGN(uf). In terms of original
variables, there are clearly a very large number of cases to consider: combi-
nations of positive or negative Ue, positive or negative ¢, and positive or

13



negative values of gradient and curvature. Variations in sign, flow direction,
and scale can be normalized out by defining the normalized variable (at any
point) as

Y

¢=T—ﬁ (43)
¢D'¢U

Now, in a case when ¢f is a function of ¢8 . ¢2 . ¢B , and Courant number,

the normalized face value is only a function of its adjacent normalized

upstream node value and ¢

~ ~Nn
5 = (8¢ 1) (44)
since the other normalized node values are constant:
58 =0 and 68 = (45)

Equation (44) includes first-order methods, second-order central and upwind
schemes, and third-order upwinding, in addition to second-order (and third-
order) shock-capturing algorithms. Higher order methods involve more distant
nodes but the normalized $f will still depend most strongly on 52 .

Second-Order Time Averaging

In general, for transient-interpolation-modeling methods based on
equation (11), the time accuracy of the resulting control-volume algorithm
(eq. (18)), is the same order as the degree of the spatial interpolation used
in equation (12). Many advection schemes in common use (including TVD schemes)
are based on second-order time averaging, which can be made explicit by
straight-forward integration. Specifically, for spatially second-order-
accurate methods, the deviation term in equation (4) is formally neglected;
thus, from equation (8), the effective face values are just the estimated time
averages. If these time averages are based on locally advected face-value
linear behavior spatially, the method is second-order accurate in time, as well.
For example if $f is the instantaneous face value, the time-averaged face
value over At is

14



At
1

_ uat .i
¢ = ¢f at J de(r) dr = op - 435 (2 . (46)
0

where ¢2 Is the estimated face value at time-level n. In most cases, the
spatial gradient is estimated as

< - <¢f ¢C> (47)

Tax/2
so that
n n n
o = of - c(of - o) (a8)
or, in terms of normalized variables,

b = (1 - 082 + chp (49)

where, now, the linear Courant number weighting is explicit and ¢f depends
only on ¢C

i - fn<$g) (50)
Figure 14 shows the normalized variable diagram (NVD), plotting character-
istics of the form of equation (50), for

(1) First-order upwinding (1U):
& = b¢ (51)
(2) The Lax-Wendroff method (2C):

~n 1 ~n
=301+ 8 (52)

3 ~n

and

15



(4) Fromm's method (2F):

=5+ b (54)
Note that the latter three spatially second-order methods all pass through the
point (0.5, 0.75); in fact, any method whose 52(52) characteristic passes
through this point with a finite slope is (at least) second-order accurate in

space, since $2 can then be written

5 - % (1 . 52) . CF<1 _ 252) (55)
where the curvature factor CF 1is a constant or, in the case of nonlinear
schemes, a function of 52. This is more apparent in terms of unnormalized

variables
of = 7 (9 + o¢) = CF(s - 20¢ + &) (56>
or
) n
of = 5 (o) + of) - CF (§—§> o e (57)
9X
f

thus, deviating from the second-order-accurate linear interpolation by second
or higher order terms, provided CF 1is finite. Note that first-order
upwinding, equation (51), and

(5) First-order downwinding (1D):
b = 1 (58)
cannot be written in the form of equation (55) for finite CF.

The characteristics shown in figure 14 are in the form of equation (50),
i.e., the estimated face value at time-Tevel n as a function of 62 . It is
also important to portray the time-averaged face value in the same way, ¢ (no
superscript), according to the linear weighting, equation (49). Figures 15 to
17 show the NVDs corresporiing to $f($2 , c> for the Lax-Wendroff, second-
order upwinding and Fromm methods, respectively. The characteristics are shown
for five different values of Courant number: ¢ » 0, c = 1/4, 1/2, 3/4, and 1.
The zero-value is distinguished by a dashed line, since this can only be



approached in an explicit calculation. Note that all these methods revert to
$f = 52 when ¢ = 1, as seen from equation (49), giving exact point-to-point
transfer as discussed previously.

Nonlinear "Shock-Capturing" Schemes

For lack of better categorizing terminology, a number of currently popular
algorithms have become known as "shock-capturing" schemes. When applied to the
pure advection problems studied here, these second-order methods (in space and
time) can be portrayed either in the 52 NVD or in the $f NVD, correspond-
ing to equations (50) or (49), respectively. However, in contrast to the
linear characteristics of figure 14 (or of figs. 15 to 17), these methods are
distinguished by nonlinear characteristics, although they remain linear in ¢
according to equation (49). A1l schemes revert to first-order upwinding out-
side the monotonic range, i.e., for 52 < 0 or 52 > 1. They all pass through
the origin (0,0) and the point (1,1) in either NVD. For the &2 NVD, they all
pass through (0.5, 0.75), as required for second-order methods.

Figure 18 shows the so-called minimum-modulus (Minmod) method (ref. 13)
which is seen to follow second-order upwinding for 0 < 52 < 0.5 and Lax-
Wendroff for 0.5 ¢ 62 < 1. Part (a) of the figure shows $2 as a function of
5& , whereas part (b) shows $f as the c-weighted average between 52 and
¢C , equation (49), again for discrete values of c¢. A related method used by
Chakravarthy and Osher (ref. 14) consists of second-order upwinding combined
with first-order downwinding at time-level n. This is shown in figure 19.
The MUSCL scheme of van Leer (ref. 5) is shown in figure 20; it consists of
Fromm's method in the "smooth" (small curvature) region near 52 + 0.5, with
piecewise linear deviations to pass through (0,0) and (1,1). In terms of 62 ,
the prescription for this method is

(1) A sufficient (although not necessary) "monotonic" limiter:

~N ~n ~n 1

(2) Fromm's method in "smooth" regions:

~N

- edy  for (60)
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and

(3) First-order downwinding:

Hlw

8 =1 for e (61)

with first-order upwinding elsewhere, as usual. Another scheme due to van Leer
(ref. 2) can be described by replacing the piecewise linear characteristic of

MUSCL with a curved line (a parabola) for 52 in the monotonic range; this has
the same slope as MUSCL for 52 = 0+ and 1, as seen in figure 21. For con-

venience, this scheme will be referred to as van Leer's "curved-line advection
method" (CLAM); in the Sweby diagram (see appendix) the characteristic forms
portion of a hyperbola, thus the scheme is sometimes referred to as van Leer's
"harmonic" advection method. A scheme developed by Roe (ref. 6), nicknamed
“Superbee," is shown in figure 22. Again piecewise linear, the 52 character-
istic (as 52 increases from 0) consists of a portion of siope 2, a portion of
slope 1/2 (following Lax-Wendroff), a portion of slope 3/2 (second-order upwind-
ing), and a portion of zero slope (first-order downwinding). This is considered
to be one of the most "compressive" of the second-order schemes with respect
to its narrow step resolution, as will be seen. This idea can be taken to
extremes, however; another formally second-order scheme, which might aptly be
called "Super-C" (for "compressive") is shown in figure 23(a); and an extremely
“"compressive" limited first-order downwinding scheme, "Hyper-C," is shown in
figure 23(b). Note that both of these figures involve the time-averaged normal-
ized face value, $f. The Super-C scheme requires $f to be the smaller of the
upper universal limiter boundary (developed in the next section) and Lax-
Wendroff, i.e., the smaller of
o
c

¢f= ]

~ ] ~
and  §e = 5(1 - O+ (1 4 c)¢2 (62)
for 0 ¢ 62 < 1/2; with limited second-order upwinding, i.e., the smaller of
3. =1 and &, = 23 - OF" (63)
f = ) C

for 1/2 < $E < 1, with first-order upwinding elsewhere. Hyper-C (limited
first-order downwinding) simply requires $f to be the smaller of
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~N

¢
=< and 1 (64)
c

in the monotonic regime, with $f = $2 elsewhere, as usual. Finally, note

that the Courant-number-dependence of Super-C and Hyper-C is no longer linear.
Results for the Nonlinear Schemes

Figures 24 through 30 show the results of simulating the three test
problems with each of the nonlinear schemes just described; again, the two
representative Courant numbers (0.05 and 0.5) are used. As seen in figure 24,
although Minmod resolves the step monotonically, the structure is not at all
sharp and the other profiles are rather diffusive, especially at smaller
Courant numbers. In the Chakravarthy-Osher simulations, shown in figure 25,
the leading-edge steepening effects of the first-order downwinding are seen,
with concomitant clipping due to first-order upwinding; again, profiles are
more diffusive at small ¢ values. The two van Leer schemes, MUSCL and CLAM
(figs. 26 and 27), give similar results to each other, as perhaps expected from
the qualitative similarity of their NVDs (figs. 20 and 21). The MUSCL scheme
in particular is one of the more successful of the well-known second-order non-
linear schemes, considering overall performance for all three test problems.
Once again, both MUSCL and CLAM deteriorate at small Courant-number values,
due primarily to the unnecessarily restrictive TVD limiter, equation (59).

Superbee (fig. 28) gives significantly sharper results for the step simu-
lation at all ¢ values. The smooth-function (sine-squared) simulation is
slightly better than that of MUSCL; however, there is a degree of artificial
steepening inherent in this method, as seen in the semi-ellipse computation.
In the presence of rapid changes in gradient (large curvature) - near the
leading and trailing edges of the profile - the scheme has a tendency to con-
vert all gentle slopes into sharp steps followed by plateaus. This defect is
purposely taken to extremes with Super-C (fig. 29) and Hyper-C (fig. 30).
Clearly, in terms of step performance, Super-C supersedes Superbee and Hyper-C
supersedes Super-C. Super-C also does an excellent job of simulating the
sine-squared profile; however, the semi-ellipse results are rather bizarre,
showing stair-casing for small ¢ values and gross artificial steepening at
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¢ = 0.5. Although Hyper-C gives virtually exact step simulation at all ¢
values, the other profiles are totally corrupted. These schemes were included
to show the futility of designing a method on the basis of a single criterion
(in this case, sharp monotonic resolution of steps); consequently the almost
incredible step simulation of these artificial-compression methods should not
be used as a standard for judging the overall performance of truly robust
schemes.

In order to show the effect of Courant number over a wider range, fig-
ure 31 gives a log-log plot of ABSERROR for the sine-squared profile (lower
curves) and the semi-ellipse (upper curves) versus ABSERROR for the step simu-
lation for Minmod, MUSCL, Superbee, and Super-C, with Courant number as a
parameter ranging from 0.01 to 0.978, with points shown at values of 0.1, 0.5,
and 0.9 on each curve. At very small c¢ values, Minmod produces large errors
for all test profiles. The other schemes' semi-ellipse errors are comparable,
with step errors decreasing in the order: MUSCL, Superbee, Super-C. The sine-
squared error follows the same order. Superbee and, in particular, Super-C,
show much less sensitivity to Courant number than the other schemes. Although
all methods' trajectories in this plane approach the origin (exact point-to-
point transfer) as ¢ » 1, the tendency is rather slow, and even at ¢ = 0.9,
the sine-squared error in particular is unacceptably large, compared with what
can be achieved with higher order methods.

THE UNIVERSAL LIMITER

The normalized-variable plane, with 52 as abscissa and $f (no super-
scrip) as ordinate, can be used to construct a very simple diagram representing
constraints on the effective time-averaged normalized face value so as to guar-
antee maintenance of monotonic profiles, thereby suppressing extraneous over-
shoots or nonmonotonic oscillations, but allowing arbitrarily high resolution
depending on the formal order of accuracy (in both space and time) of the base
method. As seen in the previous section, nonlinear second-order schemes (lin-
ear in c¢) can be represented by a single curve in the <$2 , $f> plane for any
fixed value of the Courant number. This is true for the nonlinear third-order
scheme as well (to be described), but the Courant-number dependence is then
also nonlinear, as will be seen. A1l the nonlinear second-order schemes
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(except Super-C) satisfy Sweby's sufficient TVD criteria (ref. 10) (translated
into present notation)

be = bp = ¢ for L <O and §L 1 (65)
and
$2 < 52 < min[2$2, 1] for 0 < 53 < (66)

In particular, all nonlinear characteristics pass through (0,0) and (1,1).
These criteria are in terms of 62 ; they are thus limited to temporally
second-order schemes linear in ¢, according to equation (49).

To allow higher order accuracy, it is extremely important to work directly
with the effective time-averaged normalized face value $f. rather than 52 X
By imposing simple monotonicity-maintenance criteria, much less restrictive
constraints - the universal limiter - are placed on the allowable face values.
The computational strategy is then, in principle, as follows: (1) formulate
¢p by some desired high-order method; (2) compute the actual normalized 58
value and the intended normalized or value, (3) if ¢e falls within the
allowable universal limiter range, simply proceed; (4) if ¢f lies outside
this range, reset (1imit) its value to that of the nearest constraint boundary
at the given 52 value; (5) reconstruct the new be from $f ; (6) repeat the
procedure for all other faces; (7) update according to equation (10). In
actual practice, it is less expensive computationally to carry out this strat-
egy directly in terms of unnormalized variables, as will be described in
detail.

Monotonicity-Maintenance Criteria

Figure 32 shows normalized node values with $g in the monotonic range,
0 < 52 < 1. As suggested by the cross-hatching, monotonic behavior requires
necessary conditions on $f :

$g < op < (67)
and on the corresponding face value of the adjacent upstream CV face, $u :

~

0 <&, <o | (68)

21



Consider equation (9), written for 52 in normalized variables
et -5 - (3 - 8,) (69)
In order to maintain monotonicity, the new $C value must be constrained by

&;84»1 ¢ ggﬂ < $8+1 (70

For pure advection at constant velocity, the right-hand inequality is less
restrictive than $f > $2 , but the left-hand inequality results in

~ = 1 /e wnsl
fe <8, + 2 (60 - &) an
And since $u is nonnegative and $8+] nonpositive, the worst-case condition
is given by $u =0 and $8+] =0, i.e.,
. % -
¢ < T for 0« oc < ] (72)
This, combined with inequality (67)
$n < e <1 for 0 < o2 ¢ 1 (73)

constitutes the universal limiter in the monotonic range of $g . For 68 <0
or > 1, numerical experimentation has shown that the simple condition

$f = 52 for 52 <0 or $2 > 1 (74)
gives the most satisfactory overall performance; this, of course, is equivalent
to first-order upwinding as used by other nonlinear (second-order) TVD schemes.
It does not erode the accuracy of the overall scheme, which is determined
solely by behavior in the smooth region, near 52 5 0.5.

The universal limiter, equation (74) together with inequalities (72)
and (73), is shown in diagrammatic form in figure 33; the Courant-number-
dependent boundary, $f = $g/c, is shown dashed to stress the fact that its
slope changes with different values of c¢. Note that for ¢ » 0, this boundary
approaches the vertical axis; while for ¢ = 1, it degenerates into $f = $g

22



(everywhere), corresponding to exact point-to-point transfer as usual. For
reference to previous work, the corresponding criteria in terms of Sweby's
variables, r and ¢, are given in the appendix.

For clarity, the precise steps in applying the universal limiter to
transient interpolation modeling of the advective transport equations are

given, as follows, using normalized variables.

ULTIMATE strategy (normalized variables):

(1) Designate upstream (U), downstream (D), and central (C) nodes on the
basis of SGN(uf> for each face in turn.

(2) Compute DEL = ¢) - ¢) ; if [DEL| < 107

proceed to the next face.

(say), set ¢f = ¢2 and

(3) Otherwise, compute 52 = <¢2 - ¢8)//5EL; if this is less than 0 or

greater than 1, again set ¢f = ¢g and proceed.

(4) If not, compute $f = <¢f - ¢82//bEL, where ¢f is based on a desired
high-order TIM method.

~ ~n N~ N e ~n
(5 If ¢f < ¢C , reset (the Tower 1imit) ¢f = ¢C ; if ¢f > ¢C/c, reset
(the upper limit) $f = 52/c; if $f > 1, reset (the absolute upper 1limit)
b = 1.

(6) Reconstruct ¢ = $f . DEL + ¢8 (this is the face value used in the
update algorithm).

(7) After finding all face values in this way, explicitly update according
to equation (10).

In order to avoid divisions and multiplications involved in constructing

normalized variables and reconstructing the unnormalized variables, it is
better to work directly with the unnormalized variables.
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ULTIMATE strategy (unnormalized variables):

(1) Designate upstream (U), downstream (D), and central (C) nodes on the
basis of SGN(uf) for each face in turn, and compute DEL = ¢3 - ¢8 and
ADEL = |DEL| for each face.

(2) Compute ACURV = ¢B - 2¢2 + ¢8 for each face; if ACURV > ADEL

(nonmonotonic), set ¢f = ¢g and proceed to the next face.

(3) Compute the reference face value ¢REF = ¢B + (¢g - ¢82//c for each
face.

(4) Set up some desired high order face value ¢c -

(5) If DEL » 0, limit ¢e by ¢2 below and the smaller of PREF and
¢B above.

(6) If DEL < 0, limit ¢f by ¢g above and the larger of ¢REF and ¢B
below.

(7) Update according to equation (10).

In order to get some feeling for the ULTIMATE strategy, figures 34 to 37
show normalized variable diagrams, $f = f<$2 ,c) for the universal limiter
applied to Lax-Wendroff, second-order upwinding, Fromm's method, and the third-
order QUICKEST scheme, respectively. Note similarities (and differences)
between figures 35 and 19(b), and between figures 36 and 20(b). Also note
quaiitative similarities between the limited versions of Fromm's method and
QUICKEST (figs. 36 and 37) respectively; they are identical at ¢ = 0.5 (as
well as at ¢ = 1, of course).

Results for the ULTIMATE Schemes

Figures 38 to 46 show the results for the three standard test problems
obtained by applying the universal limiter to the Lax-Wendroff scheme, second-
order upwinding, Fromm's method, QUICKEST, fourth-order central, fifth-order
upwinding, sixth-order central, seventh-order upwinding, and eighth-order
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central, respectively, each for the two Courant numbers ¢ = 0.05 and 0.5.
Note the inadequacies of the limited Lax-Wendroff scheme (fig. 38) and limited
second-order upwinding (fig. 39) similar in some respects to the nonlinear
shock-capturing schemes. Especially note the poor performance at the smaller
¢ value; the reversed asymmetry of the profiles corresponds to the respective
asymmetry of these two methods' NVDs (figs. 34 and 35).

The limited Fromm method (fig. 40) is clearly an improvement over the
simple second-order schemes, and has qualitatively similar performance to
limited QUICKEST, as expected from the similarity of their NVDs (figs. 36
and 37). The limited QUICKEST scheme (fig. 41) gives results which are
probably entirely adequate for most practical situations. The sine-function
error, in particular, is now within tolerable bounds. Although the 1imited
fourth-order method (fig. 42) gives lower ABSERROR for each profile, there is
a clearly discernible increase in WAVINESS in the semi-ellipse simulation,
especially at small Courant number values; this is a typical shortcoming of
even-order methods. Overall, the 1imited-QUICKEST scheme seems to be the best
of the schemes using the five-point stencil of figure 1; it is certainly far
superior to any of the second-order shock-capturing schemes (which involve the
same stencil). The artificial waviness of the limited fourth-order method
(which also uses this stencil) detracts from an otherwise excellent
performance.

If better step resolution is required, the limited fifth-order upwinding
scheme (fig. 43) gives highly satisfactory results, although of course this
requires a seven-point stencil in general (allowing for velocity reversais).
The limited sixth-order central method (which uses the same seven-point sten-
cil), figure 44, gives slightly better step resolution, but worse performance
for the semi-ellipse (in terms of both ABSERROR and WAVINESS) and a slightly
higher ABSERROR in the sine-squared simulation at smaller Courant numbers (due
to slight asymmetric clipping, typical of even-order methods).

The higher order schemes follow a predictable pattern, with better step
resolution, and essentially exact smooth-function simulation, but with annoy-
ing waviness in the challenging semi-ellipse problem - now even noticeable in
the upwind schemes, but still much worse with the even-order central methods,
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especially at small ¢ values. Clearly, the ULTIMATE strategy could be con-
tinued to arbitrarily high order, either with polynomial TIM schemes of the
type considered here or with alternate forms of interpolation such as splines,
for example. The only stiphlation is that the base method must be explicit in
determining the intended ¢f - step (4) of the ULTIMATE strategy.

Once again, to see the effect of Courant number over the complete stable
range, figure 47 shows ABSERROR of the sine-squared and semi-ellipse profiles
plotted on a log-log scale against ABSERROR of the step for the ULTIMATE Fromm,
QUICKEST, fifth- and seventh-order upwind schemes, with Courant number as a
parameter ranging from 0.01 to 0.978, with points shown at ¢ = 0.1, 0.5, and
0.9 on each curve. For clarity, the ULTIMATE even-order schemes have been
omitted. The limited version of Fromm's method is perhaps of academic interest
(being slightly better than MUSCL in the region near ¢ = 0.5); but since the
limited QUICKEST third-order upwind scheme requires the same stencil and
essentially the same number and type of computations, it is clearly a more
attractive method. Figure 47 should be compared with figure 31 giving the
corresponding results for second-order shock-capturing methods. The obvious
global characteristic for the higher-order ULTIMATE schemes is their much
lower error for the smooth-function simulation, due to their lack of artificial
steepening and concomitant clipping. As expected, step-simulation error
decreases monotonically with the order of the underlying base method. The
semi-ellipse and step errors of the higher order ULTIMATE schemes are strongly
correlated, whereas for the second-order artificial compression methods of
figure 31, the semi-ellipse error is roughly the same for each scheme, again
reflecting the artificial steepening and clipping of these methods.

Simplified ULTIMATE QUICKEST Strategy

Referring to figure 37, it is seen that in the range
0.2 ¢ oc < 0.8 (75

the ULTIMATE QUICKEST scheme is in fact identical to the unconstrained QUICKEST
scheme. Thus, considerable simplification can be made in the algorithm without
any approximation or effect on results. Inequality (75) can be rewritten as

¢ - 0.5] < 0.3 (76)
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or, multiplying by 2,
|1 - 28] < 0.6 an
Rewriting in terms of unnormalized variables results in
|CURV| < 0.6 |DEL| (78)
where CURV is the upwind-biased second-difference
CURV = ¢p - 200 + ¢ (79)
and DEL 1is the normalization difference
DEL = ¢p - ) (80)

Thus, if inequality (78) is satisfied, the unconstrained QUICKEST scheme can
be used directly, with no need for testing of universal-limiter constraints.
In any practical flow, this criterion will be satisfied in the overwhelming
bulk of the flow domain, being violated (if at all) only at a small fraction
of grid points near where sharp changes in gradient occur.

Of course, if
~Nn ~Nn
oc < 0 or ¢C > 1 (81)

all ULTIMATE schemes (of any order) will use (in terms of unnormalized
variables)

o = d¢ (82)
Inequalities (81) are equivalent to
|6¢ - 0.5] > 0.5 (83)
or, equivalently
|CURV| > |DEL| (84)
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Thus, the simplified ULTIMATE QUICKEST strategy is as follows:

(1) Designate "D," "C," and "U" nodes based on SGN(uf) in the usual way,
for each face.

(2) Compute |DEL| and |CURV]|.

(3) If inequality (78) is satisfied, use the unconstrained and unnormal-
ized QUICKEST face value,

oc = 3 (o5 + o0) - L (op - 00) - £ (01 - F)ovr (85)

(4) Otherwise, if inequality (84) is satisfied, use equation (82).

(5) Otherwise, compute the limited QUICKEST face value according to the
(unnormalized) ULTIMATE strategy.

(6) Proceed to the next CV face.
(7) Update in the usual way.

Note that step (5) occurs only in the small ranges

0 < 52 < 0.2 or 0.8¢< 52 <1 (86)

Cost-Effective High-Resolution Hybrid Scheme

The ULTIMATE QUICKEST scheme is a simple, robust algorithm using the same
stencil as second-order shock-capturing schemes but with much better global
accuracy. If higher resolution of near-discontinuities is deemed necessary, it
is clearly possible to use higher order (upwind) schemes globally. However,
since the need for higher resolution occurs only in small Tocalized regions, a
cost-effective strategy is to use the efficient simplified ULTIMATE QUICKEST
scheme as a base method, automatically switching to a higher resolution
ULTIMATE scheme only where needed.

28



Numerical experimentation has shown that the need for a higher resolution
scheme can be determined by monitoring the absolute value of the unnormalized
average "curvature,"é?i , defined in equation (25). 1If this is less than a
specified constant, the limited QUICKEST scheme is used; if the critical value
is exceeded locally, the algorithm branches to a higher order scheme (typically
fifth- or seventh-order upwinding), returning to ULTIMATE QUICKEST wherever S?i
drops below the threshold. By judicious choice of the threshold constant, the
algorithm will use the ULTIMATE (probably unlimited) QUICKEST algorithm almost
everywhere (i.e., in smooth regions) and switch to the higher order scheme at
just the right grid points to give the desired high resolution. Figures 48
and 49 show results for the usual test-problems for a hybrid-3/5 and hybrid-
3/7 strategy, respectively, using a value of 0.015 for the threshold constant.
Node values involved in the higher order component on either left or right CV
faces (or both) are shown by black dots; open circles designate that the
simpler limited third-order scheme is to be used on both faces of the respec-
tive control volume.

SOME ASPECTS OF GENERALIZATION

Clearly in this initial paper outlining the priciples of the universal
lTimiter, attention has been narrowly focussed on the idealized academic (yet
still very challenging) problem of one-dimensional pure advection at constant
velocity on a uniform grid. This was done purposely, of course, to identify
the basic problems associated with the advection term, the modeling of which
is by far the most difficult numerical aspect and major pacing item in the
development of computational fluid dynamics. [It makes absolutely no sense,
logically or practically, to simulate a flow using highly sophisticated multi-
equation turbulence models, for example, with an advection method which essen-
tially replaces modeled physical viscosity with inherent (or explicit)
artificial viscosity throughout the bulk of the flow domain - but this is still
the "state-of-the-art" in a disturbingly large (and growing) number of commer-
cial and research codes, especially in heat transfer and related industries.]
But, obviously, in order for the universal limiter to be of practical value in
a general-purpose code, several generalizations will need to be made. Space in
a single (already lengthy) article does not permit detailed expositions of
such generalizations or verification using classical test-problems. This will
be taken up in future papers - both by the author and presumably by other
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researchers who may wish to extend and apply the theory in various ways. How-
ever, some generalizations are fairly straight-forward and will be sketched in
this section, without showing specific results. Other generalizations of a
more obvious nature (diffusion, nonuniform grids) or a more controversial one
(systems of nonlinear equations) will be briefly addressed in the closing

section.
Variable Advecting Velocity

The ULTIMATE strategy is easily extended to unsteady one-dimensional
advection, where the advecting velocity is a function of space and time. For
simplicity, assume that the right-face Courant number is positive

cr >0 (87)

and that in a local region, ¢ 1is increasing monotonically

n n n n
Sio1 CO Ch iy (88)
The update algorithm is based on equation (10), repeated here for convenience

n+1 n
¢i = ¢i * CQ¢Q - Cr¢r (89)

where the face Courant numbers are considered to be known quantities at time-
level n. As usual, ¢r is first estimated using some desired high order
method. This is limited by the adjacent node values

n n
by C o by, (90)
Now require, conservatively, for monotonicity maintenance

n+1 n
¢1 > ¢i-1 (91)

This can be rewritten, using equation (89), as

n n
Chdp £ Codp + &5 - &5, (92)

and using a worst-case estimate of g 5 this becomes

n n
cr¢ < CQ¢1-1 + ¢i - ¢1_] (93)
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for Co > 0. (If Cy < 0, it may not be appropriate to require persistence of
monotonicity.) Of course, for constant velocity, inequality (93) is equivalent
to inequality (72). One further condition is necessary in the variable-
velocity case, guaranteeing

n+1 n
op < 4y (38

which results in a condition on ¢Q, for control-volume (i), given by

n n
CQ¢Q £ Cr¢r + ¢1+'| = ¢1 (95)
or, in terms of . viewed as the left face of CV(i+1), using a worst-case
estimate for the "far-right" face value,

n n n
Cpép < crr¢i+1 + <|>i+2 - ¢i+1 (96)

assuming Crop > 0. In the constant-velocity case, this is superseded by the
right-hand inequality of (90). The equivalent restrictions for monotonic
decreasing regions should be clear. Local extrema are treated in the usual

way.
Nonlinear Advection

Consider one-dimensional nonlinear advection

%$—+ §§§91 -0 (97)

where f(¢) is monotonic increasing. This can be rewritten in control-volume
form as

o1 = 6]+ \(fy - f,) (98)

where A = At/Ax, fQ = f<¢Q>, and fr = f(¢r>. Again, for definiteness, assume
that

n n n n
O < Of <Oy <9, (99)

First, estimate ¢r by some desired high order method. As usual, this will be
limited by interpolative monotonicity
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o) <o < o (100)

which is equivalent to

i(07) (o) < 2e(el,1) cion

Then, to assure inequality (91),
n n n
X < xf<¢1_]> e ol - o) (102)

which is the generalization of equation (93). The condition analogous to
inequality (96) is superseded by the right-hand member of equation (101).

Clearly if
f($) = ud (103)

for constant wu, the limiting conditions revert back to inequality (72).
Multidimensional Algorithm

Because of the control-volume formulation of the one-dimensional
algorithm, it is a straight-forward procedure to extend the ULTIMATE strategy
to two and three dimensions. For two dimensions, the explicit update step
analogous to equation (10) is

n+1 n

o1 = 6] - (c 0, - cg0y) - (e - €401) (104)

where "bottom" and "top" CV faces have been introduced, in addition to "left"
and "right." Because of strict conservation,

¢r(i,j) ¢Q(i+l,j) (105

and

¢t(1,j) ¢b(i,j+l) (106)

(and similarly with the Courant numbers)., Cell-averaged source-terms can be
added to the right-hand side of equation (104), if appropriate.

Focusing attention on one CV face (say the left), the first step is to

compute some explicit high (third or higher) order multidimensional estimate
for g - This is then limited in a manner similar to figure 33, where $2 is
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based on three node values in a direction normal to the face: the two strad-
dling the face together with the next upstream-biased node in the normal direc-
tion, determined by SGN(un), where Uy is the normal component of velocity at
the face in question. Thus, in general terms, the limiting step is "locally
one-dimensional" in the normal direction for each face, even though the high-
order base method is multidimensional.

For example, figure 50 shows the nodes involved for the left face (for uy
and Vo as shown) using the author's uniformly third-order polynomial interpo-
lation algorithm (UTOPIA) as the base method, with the limiter-nodes shown as
black dots and the remaining nodes as open circles. Allowing for all velocity
directions on all four faces results in a 13-point stencil (the same as that
used for the second-order discrete biharmonic operator). Higher order schemes
can be designed in a similar way. Making use of additional nodes in the normal
direction for each face appears to be more effective than involving other nodes
in the transverse direction. Extension to three dimensions follows an entirely
similar procedure. Details and results of rigorous test problems will be
presented in a subsequent paper.

DISCUSSION AND FORECAST

The universal limiter, portrayed in figure 33, represents an extremely
simple way to produce explicit "monotonic" advection schemes of arbitrarily
high order. Potential numerical oscillations are suppressed without corrupt-
ing the expected resolution of the underlying scheme. It has been seen that
second-order methods (including well-known shock-capturing or TVD schemes) are
significantly inferior to the third-order ULTIMATE QUICKEST scheme, which uses
the same five-point stencil. Better resolution of sharp changes in gradient
can be achieved by using a higher order base method, and concomitantly wider
computational stencil. However, higher (even) order central methods are sus-
ceptible to a degree of waviness under some circumstances, as seen with the
semi-ellipse simulation. In terms of overall performance, there seems little
to be gained beyond the ULTIMATE fifth-order upwind scheme, or the highly cost-
effective hybrid scheme which uses ULTIMATE QUICKEST in smooth regions and
automatically switches to a higher order ULTIMATE upwind scheme in isolated
regions of high curvature. More precise simulation of narrow local extrema can
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be built into the algorithm by using a weighting strategy which relies more
heavily on an unlimited higher order scheme in such regions, provided a suit-
able monitor can be devised to discriminate between physical and numerically
produced extrema. This now appears to be possible, using simple pattern-
recognition techniques.

Some insight into the step-resolution of various schemes can be gained by
correlating portions of a step simulation with regions of the <$2 , $f> plane.
Figure 51(a) shows schematically a simulated step profile, inverted for more
direct reference to the NVD. In the leading-edge (LE) region, 52 is slightly
less than 1; in the trailing-edge (TE) region, it is slightly greater than O.
This is reflected in figure 51(b). As seen in figure 51(¢), sharper resolution
corresponds to larger $f values relative to the corresponding 52 values, in
both regions. This correlation can be quite clearly seen, for example, with
the Chakravarthy-Osher scheme (figs. 19 and 25) or ULTIMATE second-order
upwinding (figs. 35 and 39) where the NVD characteristic is relatively low in
the TE region corresponding to a "blunt" trailing edge step simulation, and
relatively high in the LE region, giving a sharp leading edge. The reverse is
true for the ULTIMATE Lax-Wendroff scheme, resulting in a blunt leading edge
and a sharp trailing edge. The Minmod scheme selects the lower characteristic
in each region, leading to rather diffuse performance; whereas Superbee (or
more effectively, Super-C) relies on the higher characteristic in each region
of the NVD, and this results in the combination of sharp leading and trailing
edges with concomitant narrow resolution of the step.

The artificially high values of $f for the latter schemes is equivalent
to artificial compression, or (to the extent that the NVD characteristic lies
above a well-behaved scheme such as ULTIMATE QUICKEST) to negative artificial
diffusion. Ffor example, the limited Lax-Wendroff scheme exhibits artificial
negative diffusion for 58 < 0.5; whereas for limited second-order upwinding
and the Chakravarthy-Osher scheme, this appears in the leading edge region,
where the NVD characteristic is based on first-order downwinding. This
interpretation correlates with the observed trailing oscillations of the
unlimited Lax-Wendroff scheme (fig. 4) and the leading oscillations of
unlimited second-order upwinding (fig. 5).
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The great advantage of the ULTIMATE strategy is that it can be used with
explicit schemes of arbitrarily high order, giving concomitant resolution of
sudden changes in gradient without artificial steepening and clipping. The
limited polynomial schemes reviewed here already give excellent results (above
second order), but clearly the ULTIMATE philosophy can be used with other more
sophisticated and more appropriate forms of spatial interpolation. One such
method currently under investigation involves exponential ("tension") splines
applied locally; this technique offers possibilities of very high resolution
on a compact stencil.

Extension to multidimensional flow is straightforward and, as mentioned,
this will form the subject of future papers. Although not addressed in this
paper (since attention has been focused on the critical problem of pure
advection) it should be clear that the introduction of modeled physical dif-
fusion to an order consistent with the advection scheme presents absolutely no
problems. The inclusion of physical diffusion in fact puts less demands on the
advective algorithm; in most cases of practical interest, the ULTIMATE QUICKEST
scheme gives results which are graphically indistinguishable from the exact
solution (when known). In a similar way, extension to spatially varying grids
presents no problems. The higher order accuracy of the base method can be
formally maintained (refs. 9 and 16); or, provided the expansion ratio does not
exceed about 125 percent, the simpler uniform-grid formulas for third- and
higher order methods can be used directly without reducing the practical order
of accuracy - although the formal order is, of course, reduced (ref. 17).

One of the most important questions, of course, concerns how well the
ULTIMATE strategy generalizes to handle systems of nonlinear equations such as
the Euler (or Navier-Stokes) equations of gasdynamics, and the "shallow-water"
and related equations of oceanography and meteorology. This is by no means a
trivial generalization and will no doubt form the subject of future papers;
however, it is fair to predict that ULTIMATE simulations will be at least as
successful as the better shock-capturing schemes, since the underlying philoso-
phy is very similar. In particular, because of natural physical compression,
shock-wave or hydraulic jump (or atmospheric front) resolution can be expected
to be narrower than the scalar step resolution studied here. And because of
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the ability to use arbitrarily high order resolution, unsteady gasdynamic simu-
lations can be expected to give extremely reliable results, even at very high
Mach numbers and nonideal conditions. Because of the conservative control-
volume formulation, multidimensional gasdynamic, and geophysical algorithms are
expected to be similarly robust. The general philosophy here is to model the
control-volume advective modes precisely and let the physics (as reflected in
the governing equations) take care of the "acoustic" or wave modes. This idea
seems not to work well with currently popular second-order flux-limited schemes
because of these schemes' addictive reliance on locally varying (positive or
negative) artificial viscosity, requiring precise knowledge of characteristic
speeds and directions. But the principle has great potential when used with
higher order ULTIMATE multidimensional algorithms, which, by design, require
only advective velocities at the CV cell faces, as prescribed by the govern-
ing equations.

Finally, the ULTIMATE strategy can be applied to steady-flow multi-
dimensional simulations (even though the acronym might be somewhat out of
place). Quite simply, the steady-state limiter consists of ULTIMATE with the
Courant number set to zero. This, of course, results in the extremely simple
condition in the monotonic regime

oo < op <1 for 0 <o < (107)

with $f = $C’ or similar characteristic passing through (0,0) and (1,1), in

the nonmonotonic range. In other words, for locally monotonic behavior in the
direction normal to a given CV face, after a high-order multidimensional
estimate of ¢¢ is made, the face value actually used is constrained simply to
lie between the adjacent upstream and downstream node values: ¢y and ¢p,
respectively. The author's multidimensional SHARP algorithm (ref. 15), simple
high accuracy resolution program, is a third-order nonlinear scheme conforming
to these requirements; it is based on an exponential upwinding or linear extrap-
olation refinement of the multidimensional QUICK scheme (ref. 16). But, of
course, the principle can be extended to arbitrarily high order using the uni-
versal limiter for tight resolution and accuracy, thus giving ULTRA-SHARP simu-
lation of steady multidimensional flows containing near-discontinuities. In a
practical algorithm, it is important to construct a single-valued upper boundary
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for the allowable NVD region near $C > 0+. This is most conveniently achieved

by requiring

$f < const $C for 0 < $C (108)
in addition to inequality (107), with suitably large values of the slope con-
stant (~10 or 100). The piecewise linear NVD characteristic of the steady two-
dimensional SMART algorithm of Gaskell and Lau (ref. 18) is also of this form.
Steady-state methods based on second- and third-order schemes (including TVD
lTimiters) can be solved with straight-forward ADI scalar penta-diagonal matrix
algorithms using Gaskell-and-Lau's modified (nonlinear) curvature-factor tech-
nique, similar to the curvature factor, CF($8>, appearing in equation (55).
Alternatively, arbitrarily high order limited schemes can be solved by popular
ADI tridiagonal methods using the author's downwind weighting factor technique
(ref. 19), thus rendering the ULTRA-SHARP very-high-order multidimensional
nonoscillatory steady-flow schemes immediately compatible with many of the
general-purpose commercial and research steady-state elliptic solvers currently
in use, which are typically based on low-accuracy blended combinations of
first- and second-order advection methods.
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"TVD region," conforming to current practice in operational schemes, although
the less restrictive conditions would have been known to him, since they had
appeared in a GAMM proceedings paper by Roe and Baines (ref. 24) in 1982 and
in other proceedings papers by Roe (refs. 6 and 25) in 1983. The author's
attention was directed toward the latter papers by S.T. Zalesak in November
1987 and by P.L. Roe in May 1988. Interestingly enough, Roe's 1986 review
article (ref. 26> makes no mention of the less restrictive limiter boundaries,
but rather describes instead only some of the more restrictive limiters (such
as Minmod, "CLAM," and Superbee), even though the earlier proceedings papers

are referenced.

Zalesak's IMACS paper (ref. 12) describes work by his colleague, John
Lyon, at the Naval Research Laboratory, who appears to be the only other
researcher to have used arbitrarily high (up to eighth) order advection schemes
constrained by an equivalent of the universal limiter. Finally, P.H. Gaskell
and A.K.C. Lau, at the University of Leeds, have (again independently, follow-
ing from their steady-flow work (ref. 18)) developed an equivalent 1imiting
strategy for unsteady flow applied to a quasi-third-order advection scheme.
They report highly accurate simulations of standard shock-tube test problems
without resorting to flux vector splitting, Riemann solvers, or any of the
other complexities associated with currently popular forms of first/second-
order shock-capturing schemes. This confirms the author's belief that charac-
teristic decomposition is not a necessity, but rather a symptom of poorly
designed advection schemes, based on variable artificial viscosity, which
require detailed explicit knowledge of all characteristic velocities and ampli-
tudes. If the advection (macroflux) terms appearing in the conservation equa-
tions for mass momentum and energy are carefully modeled with suitably 1imited
higher order methods and microflux terms (pressure tensor, etc.) treated appro-
priately, the governing equations themselves will automatically generate the
correct additional wave modes. The far-reaching implications of this, espe-
cially for multidimensional flows, should be clear.
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APPENDIX

In a well-known paper (ref. 10), Sweby introduced sufficient conditions
for schemes to have total-variation-diminishing properties, and portrayed these
conditions in what has become known as the "Sweby diagram," a plot of the flux-
limiter factor, ¢, against the local gradient ratio, r. For constant Courant
number, the flux-limiter factor is defined as

n
<¢f _ ¢C> (A1)

<¢ - %)

where ¢f is the limited face value, ¢2 is the adjacent upstream node value,

and ¢%N is the face value according to second-order central differencing
(Lax-Wendroff)

W o) - 15 (- o)

where ¢B is the adjacent downstream value, as usual. All of the schemes
considered by Sweby are linear in Courant number in the form of equation (49),
rewritten for ¢ Z 0, as

n n
bp = (1 = [cDog + [cloc (A.3)

The Lax-Wendroff face value can also be written in this form

CEN

e = (1 = JeetEN 4 jcfel (A.4)

where ¢$EN is the linear interpolation 1/2<¢B + ¢2>. Substituting (A.3) and

(A.4) into (A.1) results in an equivalent expression for the flux-limiter factor

n n
<¢f N ¢c> (A5
¢ = < CEN ) '
C
which can be rearranged as
n n CEN n
of = og + o - (65 - o) (A.6)

interpreted as first-order upwinding modified by adding a term proportional to
the difference between tinear interpolation and first-order upwinding.
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In terms of the normalized variables as defined in the present paper, it
is not difficult to show that

@-®) G-

(P = ~| ~N = ~| ~Nn (A-7)
30-8) 320 -1ep(1-3)
Similarly, the gradient ratio used by Sweby is
n n ~n
$- - ¢ ¢
( C U) C (A.8)

R R (T

The so-called TVD region proposed by Sweby consists of first-order upwind-
ing (¢ = 0) for negative r, followed by

0O<cep<2r for 0<¢r <l (A.9

and then limited by first-order downwinding at time-level n, 52 =1 in equa-
tion (A.7), giving
0<ep<2 for r o>l (A.10)

Note that equation (A.9) can be interpreted as

3 =260 for 0<dp<y (A1)
Figure A.1 compares Sweby's TVD region (shaded) interpreted in the <$2 , $2)
plane and in the (r, ¢) plane. For reference, Roe's Superbee scheme is shown,
passing through the "second-order" point, (0.5, 0.75) in figure A.1(a), and
(1,1) in figure A.1(b). By contrast, figure A.2 gives the "extended Sweby dia-
gram" corresponding to the ULTIMATE strategy of figure 33; recall that that
figure involved ¢, rather than &2 , as used in fig. A.1(a). Note that the
sloping boundary OB in the extended Sweby diagram has a slope of 2/|c| as
compared with the slope of 2 for OC in the original Sweby diagram. Also
note that the upper boundary of the extended diagram increases in height as
lc| » 1; in fact

2

?g = T < [c] (A.12)
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whereas, in the original diagram figure A.1(b), the upper boundary is indepen-
dent of «c:

2

%c

As the Courant number varies, the point B in figure A.2 "slides" along the
line ¢g = 2¢1 + rp), where rg = [c]/€1 - |c|). For reference, the Super-C
scheme is shown in figure A.2. Hyper-C simply follows the upper boundary:
AOBA. As is immediately obvious, Sweby's TVD region is grossly over-
restrictive, resulting in predicted (normalized) face values which are too
small, especially for 52 values slightly larger than 0 or slightly smaller
than 1. This is one reason for the poor performance of currently popular
second-order TVD schemes.
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FIGURE 1. - CONTROL-VOLUME STENCILS FOR (@) FIRST-ORDER UPWINDING
AND SECOND-ORDER CENTRAL: (b) SECOND- AND THIRD-ORDER UPWINDING,
FROMM’S METHOD AND FOURTH-ORDER CENTRAL: (¢) FIFTH-ORDER UPWIND-
ING AND SIXTH-ORDER CENTRAL: (d) SEVENTH- AND EIGHTH-ORDER
SCHEMES.
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FIGURE 13. - DEFINITION OF UPSTREAM (U). DOWNSTREAM (D). AND CENTRAL
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FIGURE 14. - NORMALIZED VARIABLE DIAGRAM SHOWING 6? AS A FUNCTION OF 62
FOR FIRST-ORDER UPWINDING (1U). LAX-WENDROFF (2C). SECOND-ORDER UP-
WINDING (2U), FROMM'S METHOD (2F). AND FIRST-ORDER DOWNWINDING (1D).
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FIGURE 15. - NORMALIZED VARIABLE DIAGRAM (NVD) FOR THE FIGURE 16. - NVD FOR SECOND-ORDER UPWINDING: 6, AS A

LAX-WENDROFF METHOD: B¢ AS A FUNCTION OF ¢ FOR FUNCTION OF & FOR ¢ —0. ¢ = 0.25, 0.5. 0.75,
€ —=0. ¢ =0.25 0,5, 0.75. AND 1. AND 1.

FIGURE 17. - NVD FOR FROMM'S METHOD: G¢ AS A FUNCTION OF
& FOR ¢ =0, c=0.25 0.5 0.75, AND 1.
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(b) Of AS A FUNCTION OF ¢ AND c.

FIGURE 18. - NVDs FOR THE MINMOD SCHEME.

(2) Bf AS A FUNCTION OF G.

()] 5, AS A FUNCTION OF 6? AND c.

FIGURE 19. - NVDs FOR THE CHAKRAVARTHY-OSHER SCHEME.
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(@) Bf AS A FUNCTION OF (.

(o) B; AS A FUNCTION OF T¢ AND c.

FIGURE 20. - NVDs FOR VAN LEER’S MUSCL.
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(@ Bf AS A FUNCTION OF Of.

(b) B AS A FUNCTION OF B¢ AND c.

FIGURE 21. - NVDs FOR VAN LEER’S CLAM.
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FIGURE 22, - NVDs FOR ROE’S SUPERBEE.
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(a) SUPER-C. (b) HYPER-C.
FIGURE 23. - NVDs IN THE (362. Ef) PLANE.
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FIGURE 25. - RESULTS FOR THE CHAKRAVARTHY-OSHER SCHEME.
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FIGURE 27. - RESULTS FOR VAN LEER'S CLAM.
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FIGURE 29. - RESULTS FOR THE SUPER-C SCHEME.
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84



HYPER - C
o
2
° COUR-NUM = 0.50
—~7{ ABSERROR = 2.69
0o
a WAVINESS = 2.76
(=]
o
15
o
v
'0.00 0.25 0.50 75 .00
X
o
9
“| HYPER - C
o
e
° COUR-NUM = 0.50
~2] ABSERROR = 0.00
o
o WAVINESS = 0.00
{=]
o
s
3
O. T T T
'0.00 0.25 0.50 .75 .00
X
(=]
v
| HYPER - C
(=3
<
° COUR-NUM = 0.50
—21 ABSERROR = 3.10
Toe
o WAVINESS = 2.89
o
(=]
1)
3
'0.00 0.25 0.50 0.75 1.00
X
(b) ¢ = 0.5.

FIGURE 30. - CONCLUDED.
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ABSERROR (SEMI-ELLIPSE)

ABSERROR (SINE-SQUARED)
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FIGURE 31. - ABSERROR FOR THE SEMI-ELLIPSE PROFILE (UPPER CURVES) AND SINE-
SQUARED PROFILE (LOWER CURVES) PLOTTED ON A LOG-LOG SCALE AGAINST ABSERROR
FOR THE STEP, WITH COURANT NUMBER AS A PARAMETER RANGING FROM 0.01 TO
0.978, WITH VALUES SHOWN AT 0.1, 0.5, AND 0.9. CURVES SHOW RESULTS FOR:
(1) MINMOD. (2) MUSCL, (3) SUPERBEE. AND (4) SUPER-C. ARROWS SHOW DI-
RECTION OF INCREASING COURANT NUMBER.
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FIGURE 32. - NORMALIZED NODE VALUES FOR LOCALLY MONOTONIC
BEHAVIOR. HATCHING SHOWS NECESSARY CONDITIONS ON THE
FACE VALUE OF INTEREST. af, AND ON THAT OF THE CORRE-
SPONDING UPSTREAM FACE VALUE. 9.

FIGURE 33. - NORMALIZED VARIABLE DIAGRAM SHOWING THE ULTIMATE STRATEGY.
THE DASHED BOUNDARY HAS A COURANT-NUMBER-DEPENDENT SLOPE OF 1/c.
THE CASE SHOWN IS FOR ¢ = 0.2.
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FIGURE 3. - NVD SHOWING ®f AS A FUNCTION OF G AND c FIGURE 35. - NVD SHOWING ®f AS A FUNCTION OF & AND c
FOR THE ULTIMATE LAX-WENDROFF METHOD. FOR ULTIMATE SECOND-ORDER UPWINDING.

FIGURE 36. - NVD SHOWING 5f AS A FUNCTION OF 52 AND c FIGURE 37. ~ NVD SHOWING ®f AS A FUNCTION OF 52 AND c
FOR THE ULTIMATE FROMM SCHEME. FOR THE ULTIMATE QUICKEST METHOD.
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FIGURE 38. - RESULTS FOR THE ULTIMATE LAX-WENDROFF METHOD.
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ULTIMATE SECOND-ORDER UPWINDING
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FIGURE 39. - RESULTS FOR ULTIMATE SECOND-ORDER UPWINDING.
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FIGURE 40. - RESULTS FOR THE ULTIMATE FROMM SCHEME.
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ULTIMATE QUICKEST
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FIGURE 41, - RESULTS FOR ULTIMATE QUICKEST,

.00

-00



ULTIMATE QUICKEST

COUR NUM = 0.50

Hgﬂ ABSERROR = 0.13
I | WAVINESS = 0.09
o
o
I
2
cl-\ T T T
0.00 0.25 &'50 0.75 .00
o
ULTIMATE QUICKEST
(=]
2
] COUR NUM = 0.50
~Z‘ ABSERROR = 1.12
g WAVINESS = 1.5C
[=]
(=]
et
o
wn
9 r .
0.00 0.25 0.50 0.75 .00
X
o
v
ULTIMATE QUICKEST
o
<
o] COUR NUM = 0.50
o4 ABSERROR = 1.01
& | WAVINESS = 1.16
e 0!{ o
o
©
'0.00 0.25 0.50 0.75 .00

(b) ¢ = 0.5.
FIGURE 41. - CONCLUDED.

97



98

CRIZENAL &
OF POLR UMY

ULTIMATE FOURTH-ORDER CENTRAL
° COUR NUM = 0.05
’_‘zA ABSERROR = 0.20
i WAVINESS = 0.20
600 0. 25 ) 0.50 0.75 .00
X
ULTIMATE FOURTH-ORDER CENTRAL
- COUR NUM = 0.05
. ABSERRGR = 1.01
T WAVINESS = 1.45
o1
3
=3
.00 0.25 0.50 75 .00
X
ULTIMATE FOURTH-ORDER CENTRAL
| COUR NUM = 0.05
._.Z~ ABSERROR = 1.04
i WAVINESS = 1.29
(3- {0
'0.00 0.25 0.50 0.75 1.00
X
(a) ¢ = 0.05.

FIGURE 42. - RESULTS FOR THE ULTIMATE FOURTH-ORDER

CENTRAL SCHEME.
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ULTIMATE FIFTH-ORDER UPWINDING
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FIGURE 43, - RESULTS FOR ULTIMATE FIFTH-ORDER UPWINDING.
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FIGURE 44, - RESULTS FOR THE ULTIMATE SIXTH-ORDER CENTRAL SCHEME.
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FIGURE 45. - RESULTS FOR ULTIMATE SEVENTH-ORDER UPWINDING.
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FIGURE 46. - RESULTS FOR THE ULTIMATE EIGHT-ORDER CENTRAL SCHEME.



ULTIMATE EIGHTH-ORDER CENTRAL

o| COUR NUM = 0.50
oo ABSERROR = 0.09
T | WAVINESS = 0.12
o
o
o
fol
©
(.3 T T T
0.00 0.25 0.50 0.75
X
o
2
ULTIMATE EIGHTH-ORDER CENTRAL V_W
(=
e
o] COUR NUM = 0.50
.24 ABSERROR = 0.70
T | WAVINESS = 1.20
(=)
o
o
(=]
w
C,.> T T T
0.00 0.25 (;(.50 0.75 1.00
o
w
ULTIMATE EIGHTH-ORDER CENTRAL
1=
2
o| COUR NUM = 0.50
.21 ABSERROR = 0.67
T | WAVINESS = 1.10
o
o
S
a
C; T L T
'0.00 0.25 0.50 0.75 1.00
X
(b ¢ = 0.5.

FIGURE 46. - CONCLUDED.

107



ABSERROR (SEMI-ELLIPSE)

ABSERROR (SINE-SQUARED)
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FIGURE 47, - ABSERROR FOR THE SEMI-ELLIPSE PROFILE (UPPER CURVES) AND SINE-
SQUARED PROFILE (LOWER CURVES) PLOTTED ON A LOG-LOG SCALE AGAINST ABSERROR
FOR THE STEP, WITH COURANT NUMBER AS A PARAMETER RANGING FROM 0.01 TO
0.098. WITH VALUES SHOWN AT 0.1, 0.5. AND 0.9. CURVES SHOW: (1) ULTIMATE
FROMM, (2) ULTIMATE QUICKEST, (3) ULTIMATE FIFTH-ORDER UPWINDING, AND
(4) ULTIMATE SEVENTH-ORDER UPWINDING. ARROWS SHOW DIRECTION OF INCREASING
COURANT NUMBER,

PRPECEDING PAGE BLLANK NOT FILMED

109



110

HYBRID 3RD/S5TH
o
2
o| COUR NUM = 0.05
2] ABSERROR = 0.14
we
WAVINESS = 0.13
(=]
o
o
a
‘?‘ T T T
0.00 0.25 0.50 0.75 1.00
X
o
2
HYBRID 3RD/5TH
[=]
2
o1 COUR NUM = 0.05
~21 ABSERROR = 0.97
u_o
WAVINESS = 1.42
o
o
C;A
2
?’ T T T gl
0.00 0.25 i.so 0.75 1.00
o
v
HYBRID 3RD/5TH
o
2]
o| COUR NUM = 0.05
2] ABSERROR = 0.90
LLO
WAVINESS = 1.12
o
o »: [ -
o
3
é T T T
'0.00 0.25 &450 . 0.75 .00
(@) ¢ = 0.05,

FIGURE u48. - HYBRID ULTIMATE THIRD-/FIFTH-ORDER UPWINDING RESULTS. SOLID
CIRCLES SHOW NODES FOR WHICH EITHER THE LEFT OR RIGHT (OR BOTH) FACE
VALUES FOR THE NEXT TIME STEP ARE TO BE COMPUTED USING THE HIGHER-ORDER
SCHEME .
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FIGURE 49. - HYBRID ULTIMATE THIRD-/SEVENTH-ORDER UPWINDING RESULTS.
CIRCLES SHOW NODES FOR WHICH EITHER THE LEFT OR RIGHT (OR BOTH) FACE
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FIGURE 50. - TWO-DIMENSIONAL CONTROL-VOLUME SHOWING NODE STENCIL INVOLVED IN

ESTIMATING THE LEFT-FACE VALUE USING ULTIMATE UTOPIA. SOLID CIRCLES SHOW
NODES USED FOR THE UNIVERSAL LIMITER.
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FIGURE 51, - SCHEMATIC (INVERTED) STEP SIMULATION SHOWING LEADING-EDGE (LE) AND TRAILING-
EDGE (TE) BEHAVIOR.
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(a) THE (62, 5f) PLANE. (b) THE (r.9) PLARE.

FIGURE A.1. - SWEBY'S TVD REGION (SHADED) SHOWN. FOR REFERENCE. ROE’S SUPERBEE
SCHEME IS SHOWN BY THE HEAVY PIECEWICE LINEAR CHARACTERISTIC.

(—A)
0 1 2 r
FIGURE A.2. - “EXTENDED SWEBY DIAGRAM” CORRESPONDING TO THE ULTIMATE

STRATEGY OF FIGURE 33. FOR REFERENCE, THE SUPER-C SCHEME IS SHOWN
BY THE HEAVY PIECEWISE LINEAR CHARACTERISTIC.
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